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Summary. A self-consistent set of real spin-orbit coupling coefficients for the 
icosahedral double group is derived. Construction of the basis, resolution of 
multiplicities by spherical operator techniques, and typical applications to Zee- 
man and crystal-field problems for transition-metal atoms and lanthanides in 
icosahedral environments are described. 
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1 Introduction 

The successful synthesis of cage molecules with rigorous icosahedral symmetry 
[1] continues to raise interest in the icosahedral point group Ih. In a previous 
publication we have presented tables of coupling coefficients for the single-valued 
irreducible representations of the rotational subgroup I [2]. These tables were 
based on the symmetry functions of Boyle and Parker [3]. The purpose of the 
present paper is to extend this analysis to the icosahedral double group I*, by 
providing a suitable complex symmetry basis and corresponding spin-orbit 
coupling coefficients. In this way a complete set of practical group-theoretical 
tables for the study of icosahedral and dodecahedral molecules is made available. 

2 The real orbital basis of Boyle and Parker 

In their paper on a vibrating icosahedral cage Boyle and Parker [3] have 
presented a real symmetry basis for the orbital representations of the icosahedral 
rotational group/ .  The Cartesian xyz-frame was made to coincide with a set of 
mutually orthogonal two-fold axes [4], as shown in Fig. 1. At first sight this 
scheme is somewhat unusual in that a symmetry element of low rotational order 
is elected for quantization of the symmetry functions. However, it should be 
noted that the coordinate frame as a whole is compatible with the standard 
frame for the tetrahedral subgroup T c L This provides a connection between 
icosahedral symmetry functions and the elaborate symmetry bases which are 
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Fig. 1. Projection of the icosahedron on a plane 
perpendicular to a three-fold axis illustrating the 
coordinate convention of Boyle and Parker [3]. 
Note that the edge intersected by the y-axis is 
parallel to the z-axis. A different choice is 
possible where this edge is parallel to the x-axis 
[41 

available for cubic groups (see e.g. [5]). In this way Boyle and Parker obtained 
a convenient realization for all single-valued irreducible representations of /. 
Their component labelling is shown in Table 1. The corresponding defining 
transformation matrices may be found in the appendix of the original paper [3]. 
The xyz-labels in the table follow the usual conventions for the cubic groups. 
This is not the case though for the e0-1abels of H which do not correspond to 
standard components z 2 and x2- -y  2 transforming as ( 2 2 2 - x Z - y  2) and 
~3(x 2 _ y 2 )  resp., but to linear combinations thereof as specified in Eq. (1). 

igo> = ,f57~lHz2> + x / g / g l g x  2 - y2> 
(1) 

IHe> ---- - - , ~ l H z ' >  ÷ , f ~ l H x ' - -  y2> 

The real basis of Boyle and Parker is almost adapted to the group-subgroup 
hierarchy I ~ T D D 2. The exceptions are the 0 and e components of H which 
form a reducible basis for the two-non-degenerate complex-conJugate representa- 
tions of T. Apparently this exception was introduced to avoid the use of complex 
functions. However, there is also a more fundamental and interesting group- 
theoretical reason. When constructing a symmetry basis for a group it is often 
desirable to define symmetry functions in such a way that real coupling co- 
efficients result. As shown by Damhus, a necessary and sufficient condition for 
the existence of real coupling coefficients is that the group contain a fixed inner 

Table 1. Component labelling in the real orbital basis 
of Boyle and Parker [3] 

Representation Components 

A 

Tl 

~2 
G 

H 

IAa) 

It, x>, IV, y>, It, z> 
IT2x), IT2Y>, IT2z> 

IGa>, IGx>, I+y>, Is+> 
]HO ), tHe), ]Hx ), IHy >, IHz ) 
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automorphism carrying all standard representations into their complex conju- 
gates [6]. This means that there should be some symmetry element, the conjugat- 
ing element R0 e G, such that the automorphism R ~RoIRRo with R e G takes 
the representational matrices Dr(R) into their complex conjugates, i.e.: 

~F(R 01RR0) = ~F(R) ( 2 )  

As Bickerstaff and Damhus have demonstrated, this condition is incompatible 
with a tetrahedral symmetry adaptation of an icosahedral basis [7]. Hence by 
avoiding a complete I = T symmetrization Boyle and Parker have ensured the 
reality of the Clebsch-Gordan coupling coefficients. 

Complete tables of these coefficients for the real basis set have been published 
previously [2]. These tables have proven to be a valuable tool for the study of 
the intricate icosahedral Jahn-Teller equations of type G x (g +h) and 
H x (g + 2h) [a, 9]. 

Evidently alternative reference frames with a pentagonal or trigonal axis of 
quantization [5, 10] continue to be of interest, especially for problems which 
contain a pentagonal or trigonal perturbation. A case in point is the study of 
lanthanide double nitrates, such as EuzMg3(NO3)12.24H20 [11] where the 
lanthanide ion is surrounded by twelve oxygens forming a trigonally distorted 
icosahedron. Such a problem clearly requires a reference frame with a trigonal 
principal axis. For general purposes though, the frame adopted by Boyle and 
Parker is useful, because it has three equivalent coordinate axes. This leads to a 
greater simplicity of the coupling algebra. We will continue to use this coordinate 
frame in the subsequent treatment of the icosahedral double group I*. 

3 Complex orbital and spin basis 

The icosahedral double group contains - in addition to the five orbital represen- 
ta t ions-  four irreducible spin representations. These may conveniently be de- 
noted by the Griffith labels E', E", U', W' [12]. In this section we will discuss the 
construction of a suitable symmetry basis which allows a simple description of 
spin-orbit couplings. As in the case of the single group such a construction 
cannot be based on a tetrahedral symmetry adaptation since the I * ~  T* 
hierarchy gives rise to a complex coupling algebra [7]. 

For this reason we have applied a classical rotation-group approach. In such 
an approach the standard definitions of the spherical J representations of SU(2) 
are extrapolated to the irreducible representations of a finite subgroup. For the 
I* group under study this approach turns out to be very successful, since no less 
than six J levels transform irreducibly under the elements of I*. These are the 
integral J values 0, 1, 2 corresponding respectively to A, T1, H orbital represen- 
tations, and the half-integral J values 1/2, 3/2, 5/2 corresponding respectively to 
E', U', W' spin representations [12]. Hence symmetry bases for these representa- 
tions can be defined directly by means of the standard representational matrices 
for the corresponding J levels [13, 14]. Relevant matrices for the icosahedral 
generators are listed in appendix A [ 15]. We recall that the classical standardiza- 
tion of these matrices includes a fixed inner automorphism of the type discussed 
in Eq. (2), the conjugating element R0 being a two-fold rotation about the y-axis. 
In our convention this element is labeled C 3,8. It connects ]JM) and ] J -  M )  
kets in the following way: 

C32,SljM> = ( _ 1)J- MIj _ M)  (3) 
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The IJM) basis thus satisfies the reality condition for the coupling co- 
efficients. As a further result of the rotation group approach the non-trivial 
orbital representations T1 and H adopt a complex format. Table 2 specifies the 
conversion formulae which relate this complex orbital basis to the real basis of 
Boyle and Parker. The expressions used are in line with the usual conventions for 
real and complex forms of the spherical harmonics [13]. The table also shows the 
component labelling of the double-valued spin representations. In practice the 
representation matrices for the U' and W' representations were obtained by 
forming third and fifth symmetrized Kronecker powers of the standard ~?e'(R) 

TaMe 2. Complex orbital and spin basis for I *  

Single-valued orbital representations a 

A [Aa) 

T1 [ T l l ) = ( - [ T l x ) - i l T l Y ) ) / x f 2  

IT1 - 1> = (I T, x> -- i[ Tly>)/x/2 

I ~rlo> = IT, z> 
T2 IT21>=(--[T2x>--ilT2y>)/-,f2 

I T~ - 1> = (I T~x> - i I ~&y>)/,f~ 

IT20> = IT2z> 

G IGi>=ilGa> 

IGl> = ( - I G x >  - ;Icy > ) / , f i  

[G - 1> = ([Gx> - ilGy>)/,,f2 
IGO> = IGz> 

H I/t2> = ( . , /~[no> + . f i l m >  + / , f i l m > ) / 4  

IH - 2> = ( , /~ lHo > + , f i l m >  - i . f i l m  >)/4 

I~,1> = ( - i l H x > - I H y > ) / , f i  

[H - 1> = ( - i l H x >  + [Hy>)/.,/2 
IZ0> = (,f31 He > - ,/SiZe >)/2,~ 

Double-valued spin representations b 

E' IE'=>, [E'/~> 

E" IE"~>, IE"fl) 

~:' Iv%lu'½>,lv'-½>,tv'-~> 
w' I w'~>, I w'-~>, I w'½>, I w' - 2,1w'-~> -'~>, Iv/' - ~> 

a The complex forms of T 1 and H are analogous to the 
standard spherical harmonics Yam with 1 = 1 a n d  1 = 2 

respectively [13]. The T 2 representation is the irrational 
conjugate of T 1 
b U '  a n d  W '  are constructed from symmetrized powers of 
the (c~fl) spinor [16]. The E" representation is the irrational 
conjugate of E '  
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matrices [16]. In this way six icosahedral representations have been defined using 
SU(2) representation theory. Three representations remain: the orbital represen- 
tations/'2 and G which form a basis for the J --- 3 level, and the spin representa- 
tion E" which occurs in the decomposition of the J = 7/2 level. 

The T2 and E" species can easily be dealt with as they are irrational 
conjugates of T 1 and E' respectively. This means that their representational 
matrices can be obtained from the DTI(R) and •E'(R) matrices by simply 
changing the sign of x/5 on every occurrence [2]. The resulting matrices are listed 
in appendix A. It can immediately be verified that they obey the fixed inner 
automorphism of the C 3'8 element. In Table 2 the complex/'2 basis is related to 
the real basis of Boyle and Parker. On the other hand, the construction of a 
symmetry basis for the four-fould degenerate G representation is less straightfor- 
ward, since this representation is self-conjugate. A useful strategy is to transform 
the three x, y, z components of G into a complex form using the standard basis 
relationships. The inner automorphism then requires that the remaining ]Ga) 
component should be multiplied by i. The phase-adapted component il Ga) will 
be denoted as IGi) (cf. Table 2). The generator matrices for this new basis are 
given in Appendix A, and the transformation formulae are displayed in Table 2. 

This completes the construction of a complex orbital and spin basis for I* 
which mimics the classical Wigner-Racah approach to the rotational group. 

4 The calculation of coupling coefficients 

The coupling of icosahedral representations can most conveniently be described 
by Clebsch-Gordan coefficients of the type (FiTiFiTjlFT). These coefficients 
indicate how F~ and Fj representations combine to yield a resultant F. 

YiTj 

The coefficients in this equation are = except for an overall phase - defined by 
the symmetry properties of the three representations involved. In the present 
section we show how these coefficients can be calculated, and discuss the specific 
characteristics of the coupling in the complex spin-orbit basis described in the 
previous section. 

4.1 The A matrix method 

The calculation of the (FiTiF~TjlFT) coefficients was based on the A matrix 
method [2, 17, 18]. For a point group G, of order IGI, the elements of this matrix 
are given by: 

1 Agg, = V-= 2 Dri~;(R)D;J;;(R)Dr'(R) (5) 
I C l  R ~ G  . . . .  

Here g and g' are compound indices denoting the respective triads 7~7j7 and 
7~7j7'. The coupling coefficients are obtained by normalizing a given column of 
A. 

( r,Tir,~, l r ,  )go = Irll/2A~o/(Agogo)1/2 (6) 

In Eq. (6) Irl is the dimension of F and go is any allowed triad of 7's. Solutions 
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corresponding to different choices of go will differ by at most an overall phase 
factor. No attempt has been made to fix such external phase factors. If the 
F~ x Fj product contains F more than once, different sets of coupling coefficients 
may be obtained by varying go. From these sets a complete separation of the 
product multiplicity may always be obtained [17]. Equations (5) and (6) also 
hold for the coupling of double-valued representations, provided the summation 
in Eq. (5) is extended over the double group G*, of order 2]G [. It can easily be 
shown that only an even number of double-valued representations can give rise 
to allowed coupling triads. 

As in Ref. [2], a computer program was used to generate columns of the A 
matrix and to tabulate numerical coefficients. These were converted to algebraic 
expressions and typeset using computer editing to minimize human error. 
Selected tables of coefficients are presented in Appendix B, while a print-out of 
the complete Clebsch-Gordan series of orbit-orbit and spin-orbit couplings is 
made available as supplementary material. As expected, all coefficients are real. 
The form of the tables is the same as in our previous publication of coefficients 
for the icosahedral Boyle-Parker basis [2] and follows Griffith's presentation of 
the cubic coupling coefficients [12, 19]. 

4.2 The permutational symmetry of  the coupling coefficients 

As indicated by Griffith [20], it is usual for a Clebsch-Gordan formalism to 
define the phases of the coefficients in such a way that permutation of Fi?i and 
Fj7 s does not change the coefficients when Fi # F s, i.e.: 

Permutations involving the product representation F are not allowed, because of 
the complex conjugation of D e in Eq. (5). Nonetheless, for a basis which 
incorporates a fixed inner automorphism, an interesting relationship between 
F~ x Fj = F and F~ x F = Fj products can be established. To derive this relation- 
ship, the automorphism operation R0 is used to define new basis sets, denoted by 
a star. 

- R0[r > (8)  

As an example the starred components of a Wigner-Racah basis may be 
obtained from Eq. (3) as: 

IJm*> = (-  1)" MIj _ M> (9) 

The corresponding bra's are easily formed by inverting Eq. (8): 

<r *l = <r? ]Ro I (10) 

Combining these definitions with the matrix relation in Eq. (2) yields: 
F D~/(R) = <F7  rRIr '> 

= <F? ]Rd-'RRofT'> 

= <FT*]RIF?'*> 
F = Dv,v,,(R ) (11) 

From this equation it is clear that the starred basis transforms as the complex 
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conjugate of the original basis. This result may now be substituted in Eq. (5) to 
relate the A matrices for F~ x Fj = F and F; × F = Fj products. 

F i x F . = F  ~ A F i  x F = F j  
A gg, J ~ g .g , ,  (12) 

with 

g * = ( ? i  7* 7"), g ' * = ( ? ;  7'* ?j*) 

Since the coupling coefficients are proportional to these matrix elements, one 
finally obtains from Eqs. (6) and (12): 

Irl 1/2(r,?,r,y, lr7)~o = Irjl-1/2(ri~,r7*lrjy * )g; (13) 

The starred components in the right-hand side of this equation can be replaced 
by components of the original basis, using the explicit forms of the inner 
automorphism relation, as specified in Appendix A. 

4.3 Spherical symmetry properties of the coupling coefficients 

The tables reveal an important consequence of the rotation group approach 
adopted in Sect. 3. Indeed, all representations of I* that can be defined as 
irreducible images of spherical representations must couple in exactly the same 
way as the corresponding J levels. Coupling coefficients involving these represen- 
tations will thus coincide - except for the external phase - with the well known 
Wigner coefficients which describe the coupling at the level of the spherical 
group [21]. 

A case in point is the T~ x T~ = A + T~ + H product which matches precisely 
the vector addition of two L = 1 momenta: P x P = S + P + D. This equiva- 
lence of icosahedral and spherical coupling coefficients also implies that standard 
operator techniques of angular momentum theory can be transferred to icosahe- 
dral basis sets. As an example the ]H1) component of the T1 x 7"1 = H product 
may be obtained from the I H2)  component by lowering the pseudo-ML values 
of the T1 kets with a shift operator. 

IH1)=½5O Ig2)=½(5o IT~I))IT, 1)+½IT~I)(SO-ITI1)) 

1 1 [Tll)IT10 ) (14) = ~  ]T10)ITll)  + ~  

The same linear combination indeed emerges from the corresponding 
/'1 x T~ = H coupling table. 

A further interesting application of these operator techniques involves the 
assignment of pseudo-J values to icosahedral spin-orbit levels. To this end the 
~2 operator is expressed as 5O2 + 5p2 + 5O +5 ~ -  + 5O-5o + + 25ozsoz. Clearly 
this operator will be defined if the coupled spin and orbit representations are 
irreducible images of spherical representations. It is not required that the 
resultant representation itself is also an irreducible image. As an example 
consider the T1 x W' = E" coupling table, given in the appendix. In this case the 
orbit and spin parts correspond respectively to L = 1 and S = 5/2 representa- 
tions. This correspondence allows us to operate with 5O and 5 ° operators in the 
respective subspaces. Using the expressions for the E" kets from the appropriate 
coupling table, one obtains: 

~¢21(T 1 × W')E"c~) = 63/4](T1 x W')E"e) (15) 
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and similarly for [E"fi). The pesudo-J value associated with the E" spin-orbit 
level is thus seen to be 7/2. In this way a correspondence can be established 
between the T1 x W ' =  E" coupling and the coupling in a 6p7/2 level. At this 
point a note of warning is in order. A correspondence such as the one just 
mentioned indicates only that a formal equivalence relation exists between both 
types of coupling. It does not imply a spherical parentage relation such as occurs 
in the theory of transition-metal ions. 

4.4 The separation of  product multiplicities 

Assignments of pseudo-J values prove to be particularly useful for separation of 
the many product multiplicities that occur in the icosahedral double group. For 
the spin-orbit coupling tables no less than eight multiplicities must be addressed: 

T l x  W ' = 2 W '  

T z x  W ' = 2 W '  

G × U ' = 2 W '  

G × W ' = 2 U '  

G x W ' = 2 W "  

H × U ' = 2 W "  

H x W ' = 2 U "  

H x W' = 3W' (16) 

The cases involving TI and H representations have straightforward solutions 
since spin and orbit representations have definite S and L assignments. Pseudo-J 
values may thus be used to distinguish equisymmetric icosahedral product 
representations. 

T 1 x m ' =  W'(J  =- 5/2) + W'(J  = 7/2) 

H x U" = W'(J  = 5/2) + W'(J  = 7/2) 

H x W ' =  U'(J = 3/2) + U'(J = 9/2) 

H x W' = W'(J  = 5/2) + W'(J  = 7/2) + W'(J  = 9/2) (17) 

In Eq. (17) the half-integer values in brackets denote the pseudo-J values 
associated with particular coupling results. These values are also specified in the 
coupling tables of the appendix. The actual calculation of these solutions 
proceeds via a Schmidt orthogonalisation of two columns of the A matrix, such 
that one resulting column has zero entries for the coupling of the highest 
pseudo-Ms orbit and spin components. This column thus will describe the 
spin-orbit level of lower pseudo-J value while its orthogonal counterpart will 
correspond to the level of higher resultant J. 

The remaining four cases involving the T2 and G representations cannot be 
dealt with in this way since the orbit representations do not match a complete L 
manifold. In order to solve these problems we must first turn the spin-orbit 
products into spin-spin products by using the permutation rule of Eq. (13). The 
latter products are easily separable using pseudo-L values. 
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W' x W'= T2(L= 3) + T2(L= 5) 

W" x W' = G(L = 3) + G(L = 4) 

W' x U ' = G ( L = 3 ) + G ( L = 4 )  (18) 

Coefficients obtained by this procedure may then be transformed back into a 
spin-orbit form, yielding the results in the tables. It is noteworthy that for the 
three cases involving G Schmidt orthogonalisation is unnecessary since the 
relevant A matrices already contain orthogonal columns which precisely corre- 
spond to the separation proposed in Eq. (18). 

5 Examples of use of the tables 

5. I Icosahedral symmetry adaptation of a L = 3 manifold 

As mentioned before, the ]LM> kets with L = 3 span the reducible representa- 
tion T2 + G. The symmetry adaptation of this basis can be realised in three steps. 
In the first the ]LM) kets are decomposed into L1 and L 2 states with known 
icosahedral symmetry: 

ILM) = y' IL1M1)]LeM2)(L1M1LeM2ILM) (19) 
M I + M 2 ~ M  

The coefficients <L1M 1 L2Me]LM) in Eq. (19) are the Wigner coefficients for the 
addition of two angular momenta [21]. With L = 3, L1 = 1, L2 = 2 Eq. (19) 
yields: 

IF___ 3> = ]P ___ 1)ID ± 2) 

IF +_ 2> = (,/2]P + I>]D + 1> + IP0>ID + 2))/~/5 
IF + 1> = (~/gl/' _+ lID0> + 2.,/21P0> [D _+ 1> + IP ¢- I>ID + 2>)/ ,]E 

IFO>=f]P+I>ID-I>+x/3iPO>]DO>+]P-I>ID+I>/~v/5 (20) 

In the second step the icosahedral symmetry adaptation of the L1 and L2 states 
is introduced, i.e.: 

IL1MI> = Z E IFI~l><F17jIL1M1> 
F 1 c L  1 7 1 E F 1  

]L2M2> = Z Z [F272)(F272[L2M2) (21) 
F 2 ~ L  2 "f2~ F2 

For the case under consideration, Eq. (21) adopts a particularly simple form 
since both P and D states transform irreducibly in I (as T1 and H, respectively) 
and 

(/"171 [PM1 ) = 3 F  l T 1 ~)T1M1 

<F2])2]DM2> = 3v2 H 3~,2M 2 (22) 

Hence in Eq. (20) P and D can be replaced by T1 and H, respectively. 
Finally in the third step the [F171 >[/'272 > ket products are recoupled to IF?) 

states with irreducible symmetry characteristics. 

Ir, v,>lr2~2>= Z Z Iv~><v17,e2721v~> (23) 
f f ~ f f l x F 2 ~ E f f  
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The coupling coefficients in this expression are contained in a single row of the 
F l x  F2 coupling tables. As an example, the recoupling of the ]T~ + 1)IH + 2) 
product reads: 

ITl + 1)]H + 2) =(-31I"2+  l)  - , f s I  r 2 -  1) 

- xf3l G + 1) + x f i 5 [ G  - 1 ) ) /4x /2  (24) 

Substitution of the recoupling expressions in Eq. (20) then yields the icosahedral 
symmetries of the F levels: 

IF__3) = (-3[T2__+ 1)- ,fs]  T2-Y-1) - x/-3lG _ 1 ) +  x/i5]G-T- 1))/4xf2 

IF__+ 2) = (,/~1 r~o> + 2IGi> + 1G0)/2~/2 

I F _+ 1) = ( - , , ~ l  T= + 1) + , / f s I  T= -T- l )  + 3[G + 1) + ,,/51G -T- 1))/4~/2 
IF0) = (] T20) -- x/3] G0))/2 (25) 

In principle the method can be extended to manifolds of arbitrary high L or J 
value. It avoids complicating multiplicity issues since the product form of the 
resultant states (see Eq. (23)) provides a complete labelling system. Equation 
(25) has obvious applications to the finite group symmetry adaptation of the 
levels of a rare earth atom, enclosed by a C60 cage. Such endohedral M@Cn 
clusters are currently at the focus of intense research activity [22]. Further 
applications might involve the analysis of half-integral J eigen levels of rotational 
tensor Hamiltonians for icosahedral molecules [23]. 

5.2 Zeeman splitting of U' states 

The perturbation Hamiltonian for a system in a magnetic field is: 

= - # .  H (26) 

where H is the magnetic field vector and # is the magnetic dipole operator. The 
corresponding Zeeman effect for an icosahedral U' state is described to first 
order by a 4 x 4 perturbation matrix with elements: 

(U ' i  [~] Uj) = (U'i] - #[ U'j)  " H (27) 

Since the magnetic dipole operator transforms as T1 each matrix element in Eq. 
(27) can be factorized into a U'T1 U' coupling coefficient and a parameter K. 

< u ' i l -  ~z]uT) = g < f ' i l  T10UT) 

(u'i[- px[ UT) = K ( - ( U ' i [ T 1  + lUg/) + (U' i [Z  1 - 1U~/'))xf2 

<u'il- ~y] uT)  = ig(<f'ilz~ + 1U7) + ( c ' i l z , -  l U7)),,/2 (28) 

Here we have made use of the relationship between real and complex T~ 
components as given in Table 2. In order to convert these expressions into a spin 
Hamiltonian formalism the parameter K must be replaced by a more convenient 
g factor. This factor will be defined in such a way that the energy of the 
I U' + 3/2) component in a magnetic field along the z direction equals 3/2g~Hz (fl 
is the Bohr magneton). Hence one has by definition: 

( U ' +  3 /2 ] -  #z] U ' +  3/2) = 3/2g~ (29) 
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Combining Eqs. (28) and (29) yields: 

K = @ gfl (30) 

The Hamiltonian can then be rewritten as follows: 

= g f i~  • H (31) 

Here 50 is an effective spin operator. Its matrix form can be derived from Eqs. 
(28) and (30). 

<u'el zlUT> 5 <g'itz, ogT> 

= ~ ( -  <g'ilS~xlST> 2,,f2 (u'i[rl+lUT)+(u'ilrl-lS'j)) 

i,/i  (u'ilse, lg'j) =2~((U'i]T1 + 1UT) + (U'i]T1- 1UT)) (32) 

Note that the coupling coefficients involved are all real. Hence bra's and kets in 
these coefficients can be interchanged to attain the familiar <T,0U'j I U'i> and 
(TI+ 1UT]U'i) format of the T1 x U ' =  U' coupling table. In this way the 
matrix elements of the spin operators are readily obtained. They are listed in 
Table 3. It is easily verified that the matrices in the table obey the commutation 
relations of angular momentum theory, i.e.: 

[Sfx, SPy] = iN, (and cyclic permutations) (33) 

Once again this illustrates the residual spherical symmetry of the icosahedral 
coupling coefficients. As a result the Zeeman splitting of an icosahedral U' level 
will be isotropic with eigenvalues +_3~2grill, +_ 1~2grill. This splitting pattern is 
formally equivalent to the splitting of a quartet spin level. It is different though 

Table 3. Matrix form of the spin Hamil- 
tonian for icosahedral U' states a 

2)Px 

~ y  

3 5 0 
o ½ 
o o 
o o 

000~-Z3- - - ~  001 

o0] 
o 0 

-± 0 
2 3 

0 --5 

0 0 
1 0 

o0] 
- I  0 
o 

a The component ordering is: U' + 3/2), 
]U'+ 1/2), I U ' -  1/2), I U ' -  3/2). 
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from the Zeeman effect in an octahedral U' state, which is in principle an- 
isotropic [24]. 

The isotropy of the Zeeman effect for all icosahedral and some octahedral U' 
states has an interesting group-theoretical background. It points to the presence 
of a SO(3) invariance group in the SO(5) symmetry of the fourfold degenerate 
U' state [25]. 

5.3 Crystal field splitting of 2F terms 

As a final example we examine the crystal field splitting of 2F terms in an 
icosahedral environment. This application should be useful to describe the 
spectral features of a lanthanide inside a C60 cage. The branching rules governing 
this splitting are schematically represented in Table 4. Two coupling limits must 
be considered. In the weak-field limit spin-orbit coupling prevails. It resolves the 
free ion multiplet into 2F7/2 and 2F5/2 levels. A small crystal field perturbation of 
icosahedral symmetry will lead to further branching into W'(7/2), E"(7/2) and 
W'(5/2) crystal field components. By contrast, in the strong-field coupling limit 
the primary branching process is the 2F---~2Tz+ZG crystal field splitting. The 
spin-orbit components of these states are W'(T2), W'(ZG) and E"(2G). Clearly 
since only one E" level is present the E"(7/2) and E"(2G) states must coincide. 
On the other hand, it can be expected that the composition of the two W' states 
will vary as a function of  the coupling conditions. The W' eigenfunctions of  the 
strong field limit can be determined from the T2 x E '  = W' and G x E '  = W' 

Table 4. Comparison of branching schemes for 2F terms in icosahedral fields 
and 2D terms in cubic fields. Relative weights of the W' and U' branches are 
indicated 

I h : weak field I h : strong field 

2F ~ 2F5/2 

2F7/2' 

W' ~ W', z 2T2 

W' W' " 3/7 ~2 G 
E 11 ~ E " 

~ 2F 

O h : weak field O h : strong field 

2D (2D3/2 ~ U' 5 
• 2[5 2D5/2 ( E" 

U t .--2 E 

U' ~ 2D 
E" ~ 2T2 ¢/ 
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coupling tables. For example, the I W ' +  5/2) components read: 

] W'(2T2) + 5/2) : ( , i l l  T20> Ie' ) + 31 T2 + 1 ) I e '~ )  + ,ilk T2- 1)1E'/3))/4 

I w'(2G) + 5/2) = (2x/-21Gi)lE'~) + x/ZlG0)IE'=) + 31G + 1)IE'B) 
- 3 , f i l G  - 1)[E'fl))/8 (34) 

In the weak-field limit the starting eigenfunctions are the IJM) kets of the free 
ion. These may be determined using the familiar techniques of atomic spec- 
troscopy [21]. As an example, the 15/2 5/2> ket is given by: 

15/2 5/2) -- ( I f +  2)11/2 1/2) - , f 6 1 F +  3>11/2 - 1 / 2 ) ) , ~  (35) 

Icosahedral symmetry adaptation of these functions can be achieved by follow- 
ing the general procedure outlined in the first example of this section. In the case 
of the J = 5/2 term this symmetry adaptation is particularly straightforward 
since this manifold forms an irreducible basis for the W'(5/2) representation. 
Furthermore, the S = 1/2 spin part matches the E' representation, while the 
icosahedral symmetry of the L = 3 orbit part is specified in Eq. (25). Combining 
Eqs (25) and (35) one thus obtains for the I w'(5/2) + 5/2> component 

I w'(5/2) + 5/2> = (2xf31 r~0>le'=> + 41Gi)[E'~> + 2lG0>lE'c~> 

+ 3x/61 r 2 + 1)IE'P> + ,ffdl Tz -- 1)IE'/~) 

+ 3,,/21G + I>[E'B) - 3,,fiolG - 1)lE'/~))/4,,fi4 (36) 

The overlap integrals between this function and the equisymmetric strong field 
components of Eq. (34) are as follows: 

(w ' (z r2)  + 5/21 W'(5/2) + 5/2) = x / ~  

(W'(ZG) + 5/2[ W'(5/2) + 5/2) = x / ~  (37) 

Alternatively one may write: 

(3 × 1 / 2 ) 5 / 2 = ~ ( T  2 × E')W'+ x ~ ( G  × E') w" (38) 

This equation illustrates the mixing of the W' levels as a function of the coupling 
scheme. It shows that the distribution of the weak-field level W'(5/2) over 
W'(2T:) and w'(eG) strong-field levels follows a ratio of 3:4. This is precisely 
the ratio of the orbital degeneracies of the parent 2T 2 and 2G states. From 
normalization conditions it further follows that the other weak field level 
W'(7/2) will have the inverse branching ratio of 4:3. 

Interestingly, an analogous pattern can be shown to hold for the 2D terms in 
cubic symmetries (cf. Table 4). 

6 D i s c u s s i o n  

In the spherical symmetry group (J1 M1 J2M21JM) coupling coefficients are 
related to the so-called 3j-symbols which have a well defined permutational 
symmetry. The use of these compact symbols was advocated primarily because it 
reduces the length of tables of coupling coefficients. Furthermore the permuta- 
tional symmetry of the symbols proved to be a very important tool for working 
out general expressions of complicated coupling processes. With the implementa- 
tion of Clebsch-Gordan algorithms the need for compressed symbols has 
disappeared. However, the algebraic versatility of Wigner's 3j-symbols continues 
to be of considerable importance. 
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For the finite point groups the situation is somewhat different. Here too 
compact so-called 3F symbols have been introduced to incorporate the permuta- 
tional symmetry of the (F1)qF272[F7) coefficients. However, this necessitated 
the use of delicate phase factors which have an ad hoc character. The product 
multiplicity problems in these groups add to the confusion. Hence, since there is 
no real algebraic advantage of adopting these coefficients for the finite point 
groups, we have chosen to present our results in the direct coupling format, 
introduced by Griffith [12]. A glance at such tables immediately exposes the 
structure of a product representation. Read horizontally the tables reveal how a 
particular ket product is distributed over the coupled states. 

On the methodological level coupling coefficients for cubic and icosahedral 
groups are usually calculated via a subduction method [26]. In order to solve 
multiplicity problems this procedure may require the use of secondary basis sets 
(see e.g. [10]). In contrast the A matrix method which we have used in the 
present paper is entirely based on the symmetry properties of the finite point 
group. The programming of the basic expression in Eq. (5) makes use of a cyclic 
coset expansion of I in its tetrahedral subgroup, as described previously [2]. This 
greatly facilitates the implementation of the method. 

Acknowledgements. A.C. is indebted to the Belgian NationaI Science Foundation (NFWO) and to 
the Belgian Government (Programmatie van het Wetenschapsbeleid) for financial support. 

Supplementary material 
A print-out of the complete Clebsch Gordan series of orbit-orbit and spin-orbit couplings (88 
tables) is made available. 
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A p p e n d i x  A 

The complex orbital and spin basis for the icosahedral group is defined by a set 
of representational matrices for relevant generators. A row vector notation is 
adopted, i.e.: 

R ( ' " I F T ) ' " )  = ( . . .  I F ? ) . . . ) D r ( R )  

The standard order of the components is (1, - 1, 0) for T 1 and T2, (i, 1, - 1, 0) 
for G, (2, - 2 ,  1, - 1, 0) for H, (c~, fl) for E '  and E", (3/2, 1/2, - 1/2, - 3 / 2 )  for U', 
and (5/3, 3/2, 1/2, - 1/2, - 3/2, - 5/2) for W'. The relevant symmetry elements are 
defined in the figure. The poles of all these elements fall in the positive hemisphere. 
The representational matrices for the fundamental spinor repre~ntat ion E '  follow 
the conventions given by Altmann [1N. The golden number (, , /5 + 1)/2 is denoted 
by q~. Its irrational conjugate ( - x / 5  + 1)/2 is equal to -qS- 1. 

TI'T2 [ 

s 

°° 1 
1 0 

0 -1 

C~,4, 3 

1/2 -i i V~ 

-i4~-i¢~ o 

G 

I 0 

0 0 

0 1 

0 0 

0 0 

I 0 

0 0 

0 -1 

1/2 

2 0 0 0 

0 - i  i -V~ 

0 -i  i V~ 

o -i¢~ -~ o 

0 1 0 

1 0 0 

H o o o 

0 0 -1 

0 0 0 

E v ' E "  [ ° - 1  ] 1  0 

0 0 0 -1 

0 0 1 0 
U' 

0 -I 0 0 

1 0 0 0 

0 0 

0 0 

-I 0 

0 0 

0 1 

-1 -1 2i -2i ~/~ 

-1 - i  -2i 2i ~/~ 

1/4 -2 2 2i 2i o 

-2 2 -2i -2i 0 

-¢~-4~ o o-~ 

l / 2 f  1 - i - , - , ]  
l-i l÷i 

1/4 

-,-i -4~(~-i) ¢~(~,i) ~-i 
-¢~(,,0 -~,i -,-i -¢~(,-i) 
-¢~(,,0 ,-i + i  ¢~(,-0 
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W' 

0 0 0 0 0 -1 
0 0 0 0 1 0 
0 0 0 -1 0 0 
0 0 1 0 0 0 
0 -1 0 0 0 0 
1 0 0 0 0 0 

1/8 

-l÷i ~/;(l'i) ~/~(1-i)-J~(l'i) -JS(1-i) l,i 
-~];(l-i) ~÷~i V~(l-i) J2(l÷i) '-~i -JS(1,i) 
-~(~-i) ~("i)  -~÷~i ~,~i 4;('-i) ¢~("i) 
--~( 1 "i) m~( 1 +i ) "2 '~i --~ --~i --~( 1 --i) --~(l'i) 
"~(''i) --3--3~ ~(1--i) "¢~('÷i) 3--31 ~(' ' i)  

-,,i -~/5(1÷i) ~/~(1-i) ~t~(l÷i)-~(1-i) -1-i 

T 1 

C~, 12 

[ 4'-2i~b "4'-2 ~2(~ b" l+i) ] 
1/4 .,-2 *'~i* ~2(¢'I-i) 

T 2 

[ _¢-L2i,-i .¢2 ~( , - i )  ] 
1/4 _~2 _~- ~ m~i(~--t __~( {~ t. i ) 

vr2(,-i) -~(*+i)  m 2 } - 1 

G 1/4V~ 

-, -~(,,i) -~(~-i) - i ~  

-i~]~ 1.3i -1*3i Vr2 

H 1/16 

_3¢}-2 4i¢2 ¢}-4 .2¢}3+2i}'~ 2¢-3+~i}-2 _J-66~-1{1_2i) 
,-4 -3,~,4i, 2 -2,-3,2i, -2 2,L~i, -2 -~¢"(~÷2i) 

-2¢3+2i¢ -2 -2¢-3+2i¢ -2 4-8i -4 -2~f66( l ÷i¢) 
2¢-s÷2i¢-2 2¢s,2i¢ -~ -4 ~÷si 2~(~-i¢) 

"{*  m[( [ --2i ) --{* "I( ' "2i)"~{(  '*i* ) 2{( ' "i*) 2*~ --2* -' 

E' 1/2 [ ¢ - i - i 4  ''1 ] 
-i~ "t ~+i 

E" 1/2 [ '~- l - i  i~ ] 
i~ -~-l*i 

U' 1/8 

. ,%,4  - g ( . ~ )  -~(,-'-~,-~) ~,-~ 
-~(2+0 . , .~(3- ,-4)  -i(4,,  -~) - ~ ( , % , ~ )  

i ,  "~ -~( , - ' , i , '~)  ~(~-i) 4 %,4  
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A p p e n d i x  B 

Tables of Clebsch-Gordan coupling coefficients for typical orbit x orbit and 
spin x orbit products in the icosahedral double group. The orbit x orbit prod- 
ucts T~ × T~ (Table B1) and TI x H (Table B2) are needed for working the 
examples described in the main text. Tables B3 to B6 give all products of  an 
orbit representation and the spin 1/2 representation E', and Tables B7 to B10 list 
the equivalent products for the spin 3/2 representation U'. Table B l l  and B12 
illustrate the resolution of multiplicities in the partial products T2 x W ' =  
2 W ' + . . .  a n d H x  W ' = 3 W ' + . . . .  

Table B1. T 1 × T 1 = A + T 1 + H 

T~T1 

0 0 

0 1 

0 - I  

1 0 

1 1 

I - I  

- I  0 

- I  1 

- i  -1  

i 

i 

T1 

0 1 - I  

1 

1 

7~ 

1 

I 

1 

v~ 

H 

2 -2 1 -I 

1 

v~ 
1 

1 

1 . . . .  

t_A_. . . . .  V ~  

1 

1 

3-) 
Table B3. T 1 x E'  = E ' ( J  = ½) + U ' ( J  = 2 

E' 

0 O~ 

o # 

1 a 

1 # 

-1  # 

E I 

1 

I 
v~ 

v~ 

g ! 

3 1 1 
2 2 2 

,/5 

1 

1 
,/g 
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Table  B4.  T 2 × E '  = W' 

P. W. Fowler and A. Ceulemans 

T2 E' 

o 

--1 (~ 

5 _3 
2 2 

W ! 

! 
2 

1 3 5 
2 2 2 

1 
2v~ 

¢ g  
4 

_ !  
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,,,g 
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1 
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_ 1  
2 

, / g  

2v~ 

1 

2,,~ 
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4 

1 

4 

3 ̧  
4 

Table  B5.  G × E ' =  E " +  W' 

G E' 

0 

- - 1  o~ 

- 1  /3 

E 

1 
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1_ 
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1 
v~ 

/3 _5 
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Table B6. H x E' = U'(J = 3) + W'(J  = 5_)2 

335 
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Table B7. T, × U' = E'(J = 1) + U'(J - 2 + -  3) W'(J = 2) 

T1 U' 

o 
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Table Bll .  T 2 x W' = 2W' 
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